Муниципальное бюджетное общеобразовательное учреждение «Лицей имени Ивана Ивановича Федунца»

PACCMOTPEHO

лаборатории заседании естественно-математических наук руководитель лаборатории

Му-Лучина Т.В. протокол от 29.08.2016г. №1

УТВЕРЖДЕНО

решением педагогического совета приказом директора протокол от 30.08. 2016г. № 1 педагогического Председатель

совета **П**.Б.Перегудова

УТВЕРЖДЕНО

МБОУ лицея от 31.08. 2016г. № 2-д

Программа элективного курса 11 класс «Подготовка к ЕГЭ по физике»

Учитель:

Лучина Т.В.

Пояснительная записка

Рабочая программа по элективному курсу: «Подготовка к ЕГЭ по физике» для 11 класса составлена на основе авторских программ:

- 1. В. Л. Орлов, Ю. А. Сауров, «Методы решения задач по физике», М., Дрофа, 2005 год.
- 2. Н. И. Зорин. Элективный курс «Методы решения физических задач: 10-11 классы», М., ВАКО, 2007 год (мастерская учителя).

Программный материал рассчитан для учащихся 11 классов на 1 учебный час в неделю, всего 35 часов. Настоящая программа позволяет более глубоко и осмысленно изучать практические и теоретические вопросы физики. Цель этого элективного курса – развить у учащихся следующие умения: решать предметно-типовые, графические и качественные задачи по дисциплине; осуществлять логические приемы на материале заданий по предмету; решать нестандартные задачи, а так же для подготовки учащихся к успешной сдаче ЕГЭ. Программа посвящена рассмотрению отдельных тем, важных для освоения методов решения задач повышенной сложности. В программе рассматриваются теоретические вопросы, в том числе понятия, схемы и графики, которые часто встречаются в формулировках контрольно- измерительных материалов по ЕГЭ, а также практическая часть. В практической части рассматриваются вопросы по решению экспериментальных задач, которые позволяют применять математические знания и навыки, способствующие творческому и осмысленному восприятию материала.

В результате реализации данной программы у учащихся формируются следующие учебные компетенции: систематизация, закрепление и углубление знаний фундаментальных законов физики; умение самостоятельно работать со справочной и учебной литературой различных источников информации; развитие творческих способностей учащихся.

Цель: Подготовка учащихся к успешной сдаче ЕГЭ.

Задачи:

- 1. Научить учащихся самостоятельно анализировать конкретную проблемную задачу и находить наилучший способ её решения.
- 2. Развитие физического и логического мышления школьников.
- 3. Развитие творческих способностей учащихся и привитие практических умений.

В результате прохождения программы учащиеся должны знать:

- основные понятия физики;
- основные законы физики;
- вывод основных законов;
- понятие инерции, закона инерции;
- виды энергии;
- разновидность протекания тока в различных средах;
- состав атома;
- закономерности, происходящие в газах, твердых, жидких телах.

В результате прохождения программы учащиеся должны уметь:

- производить расчеты по физическим формулам;
- производить расчеты по определению координат тел для любого вида движения;
- производить расчеты по определению теплового баланса тел;
- решать качественные задачи;
- решать графические задачи;
- решать задачи на соответствие;
- снимать все необходимые данные с графиков и производить необходимые расчеты;
- писать ядерные реакции, рассчитывать период полураспада, энергию связи, энергетический выход ядерных реакций;
- составлять уравнения движения;
- по уравнению движения, при помощи производной, находить ускорение, скорость;

- давать характеристики процессам происходящие в газах;
- строить и объяснять графики изопроцессов;
- описывать процессы при помощи уравнения теплового баланса;
- применять закон сохранения механической энергии;
- применять закон сохранения импульса;
- делать выводы.

Содержание курса 11 класса

Введение. Правила и приемы решения физических задач. (2 ч)

Что такое физическая задача. Состав физической задачи. Физическая теория и решение задач. Значение задач в обучении и жизни. Классификация физических задач по требованию, содержанию, способу задания и решения. Примеры задач всех видов.

Составление физических задач. Основные требования к составлению задач. Способы и техника составления задач. Примеры задач всех видов.

Динамика и статика (3 ч)

Координатный метод решения задач по механике. Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления. Решение задач на движение материальной точки, системы точек, твердого тела под действием нескольких сил. Задачи на определение характеристик равновесия физических систем.

Законы сохранения (4 ч)

Классификация задач по механике: решение задач средствами кинематики, динамики, с помощью законов, сохранения. Задачи на закон сохранения импульса и реактивное движение. Задачи на определение работы и мощности. Задачи на закон сохранения и превращения механической энергии. Решение задач несколькими способами. Составление задач на заданные объекты или явления. Взаимопроверка решаемых задач. Знакомство с примерами решения задач по механике республиканских и международных олимпиад.

Строение и свойства газов, жидкостей и твёрдых тел (6 ч)

Качественные задачи на основные положения и основное уравнение молекулярнокинетической теории (МКТ). Задачи на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах. Задачи на свойства паров: использование уравнения Менделеева — Клапейрона, характеристика критического состояния. Задачи на описание явлений поверхностного слоя; работа сил поверхностного натяжения, капиллярные явления, избыточное давление в мыльных пузырях. Задачи на определение характеристик влажности воздуха. Задачи на определение характеристик твердого тела: абсолютное и относительное удлинение, тепловое расширение, запас прочности, сила упругости.

Основы термодинамики (6 ч)

Комбинированные задачи на первый закон термодинамики. Задачи на тепловые двигатели. Экскурсия с целью сбора данных для составления задач. Конструкторские задачи и задачи на проекты: модель газового термометра; модель предохранительного клапана на определенное давление; проекты использования газовых процессов для подачи сигналов; модель тепловой машины; проекты практического определения радиуса тонких капилляров.

Электрическое и магнитное поля (5 ч)

Характеристика решения задач раздела: общее и разное, примеры и приемы решения. Задачи разных видов на описание электрического поля различными средствами: законами сохранения заряда и законом Кулона, силовыми линиями, напряженностью, разностью потенциалов, энергией. Решение задач на описание систем конденсаторов. Задачи разных видов на описание магнитного поля тока и его действия: магнитная индукция и магнитный поток, сила Ампера и сила Лоренца. Решение качественных экспериментальных задач с использованием электрометра, магнитного зонда и другого оборудования.

Постоянный электрический ток в различных средах (5 ч)

Задачи на различные приемы расчета сопротивления сложных электрических цепей. Задачи разных видов «а описание электрических цепей постоянного электрического тока с помощью закона Ома для замкнутой цепи, закона Джоуля — Ленца, законов последовательного и параллельного соединений. Ознакомление с правилами Кирхгофа при решении задач. Постановка и решение фронтальных экспериментальных задач на определение показаний приборов при изменении сопротивления тех или иных участков цепи, на определение сопротивлений участков цепи и т. д. Решение задач на расчет участка цепи, имеющей ЭДС.

Задачи на описание постоянного электрического тока в электролитах, вакууме, газах, полупроводниках: характеристика носителей, характеристика конкретных явлений и др. Качественные, экспериментальные, занимательные задачи, задачи с техническим содержанием, комбинированные задачи.

Электромагнитные колебания и волны (4 ч)

Задачи разных видов на описание явления электромагнитной индукции: закон электромагнитной индукции, правило Ленца, индуктивность. Задачи на переменный электрический ток: характеристики переменного электрического тока, электрические машины, трансформатор. Задачи на описание различных свойств электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация. Задачи по геометрической оптике: зеркала, оптические схемы.

№ п/п	Дата	Тема занятия		
Введение. Правила и приемы решения физических задач.				
1		Классификация физических задач по требованию, содержанию, способу задания и решения. Примеры задач всех видов.		
2		Общие требования при решении физических задач. Работа с текстом задачи. Анализ решения и его значение. Оформление решения.		
Динамика и статика (3 ч)				
3		Координатный метод решения задач по механике. Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления.		
4		Решение задач на движение материальной точки, системы точек, твердого тела под действием нескольких сил.		
5		Задачи на принцип относительности: кинематические и динамические характеристики движения тела в разных инерциальных системах отсчета.		
Законы сохранения (4 ч)				
6		Классификация задач по механике: решение задач с помощью законов, сохранения. Задачи на закон сохранения импульса и реактивное движение.		
7		Задачи на определение работы и мощности. Задачи на закон сохранения и превращения механической энергии.		
8		Решение задач несколькими способами. Составление задач на заданные объекты или явления. Взаимопроверка решаемых задач		

9	Знакомство с примерами решения задач по механике республиканских и международных олимпиад
Строение и	свойства газов, жидкостей и твёрдых тел (6 ч)
10	Качественные задачи на основные положения и основное уравнение молекулярно-кинетической теории (МКТ). Задачи на описание поведения идеального газа: основное уравнение МКТ
11	Задачи на определение скорости молекул, характеристики состояния газа в изопроцессах.
12	Задачи на свойства паров: использование уравнения Менделеева — Клапейрона, характеристика критического состояния.
13	Задачи на описание явлений поверхностного слоя; работа сил поверхностного натяжения, капиллярные явления, избыточное давление в мыльных пузырях. Задачи на определение характеристик влажности воздуха.
14	Задачи на определение характеристик твердого тела: абсолютное и относительное удлинение, тепловое расширение, запас прочности, сила упругости.
15	Качественные и количественные задачи. Устный диалог при решении качественных задач. Графические и экспериментальные задачи, задачи бытового содержания.
Основы терм	иодинамики (6 ч)
16	Комбинированные задачи на первый закон термодинамики.
17	Задачи на тепловые двигатели.
18	Экскурсия с целью сбора данных для составления задач.
19	Задачи на проекты: модель газового термометра; модель предохранительного клапана на определенное давление.
20	Проекты использования газовых процессов для подачи сигналов; модель тепловой машины.
21	Задачи на проекты: проекты практического определения радиуса тонких капилляров.
Электрическ	сое и магнитное поля (5 ч)
22	Характеристика решения задач раздела: общее и разное, примеры и приемы решения.
23	Задачи разных видов на описание электрического поля различными средствами: законами сохранения заряда и законом Кулона, силовыми

	линиями,
24	Задачи разных видов на описание электрического поля различными
	средствами: напряженностью, разностью потенциалов, энергией.
	Решение задач на описание систем конденсаторов.
25	Задачи разных видов на описание магнитного поля тока и его действия:
	магнитная индукция и магнитный поток, сила Ампера и сила Лоренца.
26	Решение качественных экспериментальных задач с использованием
	электрометра, магнитного зонда и другого оборудования.
Постояннь	ий электрический ток в различных средах (5 ч)
27	Задачи разных видов «А» описание электрических цепей постоянного
	электрического тока с помощью закона Ома для замкнутой цепи,
28	Задачи разных видов «А» на закон Джоуля — Ленца, описание
	последовательного и параллельного соединений.
20	
29	Ознакомление с правилами Кирхгофа при решении задач. Постановка и
	решение задач на определение показаний приборов при изменении
	сопротивления тех или иных участков цепи, на определение
	сопротивлений участков цепи и т. д
30	Решение задач на расчет участка цепи, имеющей ЭДС.
31	Задачи на описание постоянного электрического тока в электролитах,
	вакууме, газах, полупроводниках: характеристика носителей,
	характеристика конкретных явлений и др.
Электрома	гнитные колебания и волны (4 ч)
32	Задачи разных видов на описание явления электромагнитной индукции:
	закон электромагнитной индукции, правило Ленца, индуктивность.
33	Задачи на переменный электрический ток: характеристики переменного
	электрического тока, электрические машины, трансформатор.
34	Задачи на описание различных свойств электромагнитных волн:
	скорость, отражение, преломление, интерференция, дифракция,
	поляризация.
35	Задачи по геометрической оптике: зеркала, оптические схемы.
	I.

- **Литература:** Аганов А. В. и др. Физика вокруг нас: Качественные задачи по физике. М.: Дом 1. педагогики, 1998.
- Бутырский Г. А., Сауров Ю. А. Экспериментальные задачи по физике. 10—11 кл. М.: Просвещение, 1998.

- 3. Каменецкий С. Е., Орехов В. П. Методика решения задач по физике в средней школе. М.: Просвещение, 1987.
- 4. Малинин А. Н. Теория относительности в задачах и упражнениях. М.: Просвещение, 1983.
- 5. Новодворская Е. М., Дмитриев Э. М. Методика преподавания упражнений по физике во втузе. М.: Высшая школа, 1981.
- 6. Орлов В. А., Никифоров Г. Г. Единый государственный экзамен. Контрольные измерительные материалы. Физика. М.: Просвещение, 2004.
- 7. Орлов В. А., Никифоров Г. Г. Единый государственный экзамен: Методические рекомендации. Физика. М.: Просвещение, 2004.
- 8. Орлов В. А., Ханнанов Н. К., Никифоров Г. Г. Учебно-тренировочные материалы для подготовки к единому государственному экзамену. Физика. М.: Интеллект-Центр, 2004.
- 9. Тульнинский М. Е. Качественные задачи по физике. М.: Просвещение, 1972.
- 10. Тульнинский М. Е. Занимательные задачи-парадоксы и софизмы по физике. М.: Просвещение, 1971.